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Abstract

Accurately assigning medical codes from International Clas-
sification of Diseases(ICD) to free-text medical documenta-
tion is crucial for healthcare operations but traditionally re-
quires significant manual effort. Automatic ICD coding us-
ing NLP is gaining interest, particularly with pretrained lan-
guage model (PLM). This research enhances PLM-based ICD
coding, inspired by the PLM-ICD framework and the Read,
Attend, and Code (RAC) model. This work focuses on ad-
dressing the challenge of the large label space in ICD cod-
ing. A novel framework is proposed that integrates the code-
title guided attention modules from RAC into the PLM-
ICD architecture. This approach leverages code title infor-
mation to learn semantic relationships between clinical notes
and ICD codes. Experiments conducted on the MIMIC-
III dataset demonstrate the effectiveness of proposed ap-
proach. The modified framework demonstrates superior per-
formance compared to the original PLM-ICD. The integra-
tion of domain-specific knowledge and advanced attention
mechanisms improves the accuracy of Automatic ICD cod-
ing.

Introduction
Automatic ICD coding coding is the task of assigning diag-
nosis and procedure codes to free-text medical documenta-
tion (Dong et al. 2022). These codes ensure that patients re-
ceive the correct level of care and that healthcare providers
are accurately compensated for their services. However, this
is a costly manual process prone to error (O’Malley et al.
2005; Tseng et al. 2018). The goal of automatic ICD cod-
ing is to predict a set of codes or provide a list of codes
ranked by relevance for a medical document. Numerous ma-
chine learning models have been developed for automatic
ICD coding (Stanfill et al. 2010) . These models are trained
on datasets of medical documents, typically discharge sum-
maries, each labeled with a set of medical codes. While
some models treat automatic ICD coding as an ad-hoc in-
formation retrieval problem (Rizzo et al. 2015; Park et al.
2019), it is more commonly posed as a multi-label classifi-
cation problem.

Prior work has identified several challenges of this task,
including the large number of labels to be classified, the long
input sequence, and the imbalanced label distribution, i.e.,
the long-tail problem (Xie et al. 2019). Taking automatic

international classification of diseases (ICD) coding as ex-
ample, given discharge summaries notes as input, the task
is to assign multiple ICD disease and procedure label codes
associated with each note. The assigned codes need to be
accurate and complete for the billing purposes. To mitigate
the data sparsity problem, additional structured knowledge
could be applied. The textual description of medical codes
describes the exact meaning of codes and provides extra se-
mantic information for abstract codes.

Recently, pretrained language models (PLMs) with the
Transformer (Vaswani et al. 2017)architecture have become
the dominant forces for NLP research. These models are pre-
trained on large amount of text with various language mod-
eling objectives, and then fine-tuned on the desired down-
stream tasks to perform different functionalities.

Thus, more researchers have proposed to use transformer-
based models. Zhang, Liu, and Razavian proposed BERT-
XML that combines BERT encoders with multi-label at-
tention. Huang et al.Huang, Tsai, and Chen developed a
Transformer-based pretrained language model with domain-
specific PLM and segment pooling for the long input se-
quence problem. Kim and Ganapathi implements the code-
title guided attention module.Yang et al. adopted longformer
with domain-specific knowledge enhancement.

In this paper, we propose a novel framework that inte-
grates the code-title guided attention modules from RAC
into the PLM-ICD architecture. Our main contributions are
as follows:

• We propose a framework that combines the advantages
of PLM-ICD and RAC models, specifically integrating
code-title guided attention mechanisms into the PLM-
based architecture for medical coding.

• We address the large label space challenge in medical
coding by leveraging code title information to establish
stronger semantic connections between clinical notes and
medical codes.

• We conduct comprehensive experiments on the MIMIC-
III dataset, demonstrating that our proposed framework
achieves superior performance compared to the original
PLM-ICD model, particularly in handling complex med-
ical coding scenarios.



Related Work
Automated Medical Coding
ICD code prediction is a challenging task in the medical do-
main. Several recent work attempted to approach this task
with neural models. Choi et al.; Baumel et al. used recur-
rent neural networks (RNN) to encode the EHR data for
predicting diagnostic results. Li and Yu recently utilized a
multi-filter convolutional layer and a residual layer to im-
prove the performance of ICD prediction. On the other hand,
several work tried to integrate external medical knowledge
into this task. In order to leverage the information of defi-
nition of each ICD code, RNN and CNN were adopted to
encode the diagnostic descriptions of ICD codes for bet-
ter prediction via attention mech- anism (Shi et al. 2017;
Mullenbach et al. 2018). Moreover, the prior work tried to
consider the hi- erarchical structure of ICD codes (Xie and
Xing 2018), which proposed a tree-of-sequences LSTM to
simultaneously capture the hierarchical relation- ship among
codes and the semantics of each code. Also,Tsai, Chang, and
Chen introduced various ways of leveraging the hierarchi-
cal knowledge of ICD by adding refined loss functions. Re-
cently, Cao et al. proposed to train ICD code embeddings in
hyperbolic space to model the hierarchical struc- ture. Addi-
tionally, they used graph neural network to capture the code
co-occurrences. LAAT (Vu, Nguyen, and Nguyen 2020) in-
tegrated a bidirectional LSTM with an improved label-aware
attention mechanism. Ef- fectiveCAN (Liu et al. 2021) inte-
grated a squeeze- and-excitation network and residual con-
nections along with extracting representations from all en-
coder layers for label attention. The authors also introduced
focal loss to tackle the long-tail predic- tion problem. ISD
(Zhou et al. 2021)employed extraction of shared represen-
tations among high- frequency and low-frequency codes
and a self- distillation learning mechanism to alleviate the
long-tail code distribution. Kim and Ganapathi proposed a
framework called Read, Attend, and Code (RAC) to effec-
tively predict ICD codes, which is the current state-of-the-art
model on this task. Most recent models focused on develop-
ing an effective interaction between note representations and
code representations (Cao et al. 2020; Zhou et al. 2021; Kim
and Ganapathi 2021).

Model architectures
Most recent state-of-the-art models use an encoder-decoder
architecture. The encoder takes a sequence of tokens T ∈
Zn as input and outputs a sequence of hidden representa-
tions H ∈ Rd

h × n, where n is the number of tokens in
a sequence, and dh is the hidden dimension. The decoder
takes H as input and outputs the code probability distribu-
tions. For the task of ranking, codes are sorted by decreasing
probability. For classification, code probabilities larger than
a set decision boundary are predicted.

Encoders The encoder usually consists of pre-trained
non-contextualized word embeddings (e.g., Word2Vec) and
a neural network for encoding context. More recently, pre-
trained masked language models (e.g., BERT) have gained
popularity (Teng et al. 2023). In order to mitigate the domain
mismatch problem, we propose to utilize the PLMs that are

pretrained on biomedical and clinical text, e.g..The MIMIC-
III training set or PubMed articles are commonly used for
pre-training.

Decoders The most common decoder architectures can
be grouped into three primary types. The simplest decoder
is a pooling layer (e.g., max pooling) followed by a feed-
forward neural network. More recently, label-wise attention
(LA) (Mullenbach et al. 2018) has replaced pooling (Huang,
Tsai, and Chen 2022; Li and Yu 2020; Liu et al. 2021; Vu,
Nguyen, and Nguyen 2020). LA transforms a sequence of
hidden representations H into label-specific representations
V ∈ Rdh×L, where L is the number of unique medical codes
in the dataset. It is computed as

A = softmax(WH), V = HA⊤, (1)

where the softmax normalizes each column of WH , W ∈
RL×dh is an embedding matrix that learns label-specific
queries, and A ∈ RL×n is the attention matrix. Then, V is
used to compute class-wise probabilities via a feedforward
neural network. As LA was first used in the convolutional
attention for multi-label classification (CAML) model (Mul-
lenbach et al. 2018), we refer to this method as LACAML.

An updated label-wise attention module was introduced in
the label attention model (LAAT) (Vu, Nguyen, and Nguyen
2020). We refer to this attention module as LALAAT . In
LALAAT , the label-specific attention is computed similarly
to LACAML as A = softmax(UZ), where U ∈ RL×dp

is a learnable embedding matrix, but with Z = tanh(PH)
where P ∈ Rdp×dh is a learnable matrix, Z ∈ Rdp×n and
dp is a hyperparameter.

Usage of Auxiliary Information Auxiliary information
can be utilized to enhance representation learning and im-
prove the performance of medical coding. This section intro-
duces the usage of auxiliary information, including implicit
information such as label information via randomly initial-
ized embeddings and explicit information (or external data)
such as Wikipedia articles, textual code descriptions, and
code hierarchies. Implicit label information has been used
by most previously introduced label attention–based mod-
els. The joint embedding model (LEAM) (Wang et al. 2018)
embeds labels and leverages the compatibility between word
and label embeddings to calculate attention scores. The fol-
lowing paragraphs review the methods that use external data
explicitly. The external data can be applied to both encoders
and decoders. When applied to encoders, external data en-
hance the representation learning of clinical texts. The ex-
ternal information usually acts as the regularization for de-
coders when combining external data augmentation with the
decoding process.

The textual description of medical codes describes the ex-
act meaning of codes and provides extra semantic informa-
tion for abstract codes. The embeddings of code description
are denoted as , where m is the number of codes, and is
the dimension of description embedding. Several publica-
tions utilize the code description to enhance representation
learning. DR-CAML(Mullenbach et al. 2018) uses the word
vectors of description as a regularization when optimizing
the labelwise attention module. Similarly, CAIC (Teng et al.
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Figure 1: llustration of our proposed framework. LM encodes segments of a document separately, and a code-title guided
attention mechanism is to aggregate the segment representations into label-aware document representations. The document
representations are linear-transformed to predict ICD codes.

2020) develops cross-textual attention to establish the con-
nection between medical notes and ICD codes. A prompt-
based fine-tuning model (Yang et al. 2022) adds a series of
ICD code descriptions as the prompt to integrate code de-
scription and input notes for multi-label few-shot ICD cod-
ing.

Proposed Solution
Our proposed framework combines the strengths of PLM-
ICD and RAC, integrating three key components:

• Domain-specific PLM for encoding medical text
• Segment pooling to handle long documents
• Code-title guided attention for label-aware document

representation

As shown in Figure 1, the framework first uses a domain-
specific PLM to encode document segments. The segment
pooling mechanism then aggregates these representations.
Finally, code-title guided attention generates label-aware
document representations for ICD code prediction.

Domain-Specific Pretraining Automatic ICD coding is a
domain-specific task where the input text consists of clinical
notes writ- ten by clinicians. The clinical notes contain many
biomedical terms, and understanding these terms is essen-
tial in order to assign ICD codes accurately. While general
PLMs are pretrained on large amount of text, the pretrain-
ing corpora usually does not contain biomedical text, not
to mention clinical records. In order to mitigate the domain
mismatch prob- lem, we propose to utilize the PLMs that
are pretrained on biomedical and clinical text. These PLMs
are specifically pretrained for biomedical tasks and proven
to be effective on various downstream tasks. We take the
domain-specific PLMs and fine-tune them on the task of au-
tomatic ICD coding. We can plug-and-play the domain- spe-

cific PLMs since their architectural design and pretraining
objective are identical to their general- domain counterparts.
This makes our framework agnostic to the type of PLMs,
i.e., we can apply any transformer-based PLMs as the en-
coder.And RoBERTa-PM (Lewis et al. 2020) has the best
performance in PLM-ICD model (Huang, Tsai, and Chen
2022).

Segment Pooling In order to tackle the long input text
problem, Huang, Tsai, and Chen propose segment pooling
to surpass the maximum length limitation of PLMs. The
segment pooling mechanism first splits the whole document
into segments that are shorter than the maximum length, and
encodes them into segment representations with PLMs. Af-
ter encod- ing segments, the segment representations are ag-
gregated as the representations for the full docu- ment.

More formally, given a document d = {t1, t2, . . . , t|d|} of
|d| tokens, we split it into |s| consecutive segments si of c
tokens:

si = {tj | c · i ≤ j < c · (i+ 1)}
The segments are fed into PLMs separately to compute

hidden representations, then concatenated to obtain the hid-
den representations of all tokens:

H = concat(PLM(s1), · · · , PLM(s|s|))

The token-wise hidden representations H can then be
used to make predictions based on the whole document.

Code-Title Guided Attention (Kim and Ganapathi 2021)
use the definition tables of the diagnoses and procedure
codes, concatenate long and short titles together for all ny

codes, and build CT first. By tokenizing CT with nt tokens,
we have a title matrix T where T ∈ Rny×nt . From T input,
the module extracts a code-title embedding of dimension d
by using an embedding layer followed by a single CNN layer



Table 1: Comparison of MIMIC-III full and MIMIC-III 50 datasets.

MIMIC-III full MIMIC-III 50
Number of documents 52,723 11,368
Number of patients 41,126 10,356
Number of unique codes 8,929 50
Codes pr. instance: Median (IQR) 14 (10-20) 5 (3-8)
Words pr. document: Median (IQR) 1,375 (965-1,900) 1,478 (1,065-1,992)
Documents: Train/val/test [%] 90.5/3.1/6.4 71.0/13.8/15.2
Missing codes: Train/val/test [%] 2.7/66.4/54.3 0.0/0.0/0.0

Table 2: Results on the MIMIC-III 50test set (%).

Model AUC F1 P@5
Macro Micro Macro Micro

MultiResCNN 89.7 93.8 62.2 67.3 63.4
LAAT 90.5 92.8 60.8 66.8 64.0
PLM-ICD 91.7 93.8 66.3 70.5 65.7
Ours 92.09 94.10 64.56 71.10 66.45

and Global Max Pooling layer. We let Et ∈ Rny×d be the
extracted code-title embedding matrix. In the model, each
concatenated code title is padded to nt = 36 tokens, the
same pre-trained Word2Vec Skip-gram model weights that
the reader used are loaded to initialize the embedding layer,
and a single CNN layer with d filters, kernel size 10, and
tanh activation function are used. However, we use PLM to
get initialized embedding layer.

This function computes code-level attention over the
reader output to attend to different parts for each code. We
explicitly use Et as a query matrix to guide where to attend
from the reader output. Specifically, the approach leads to
the following attention mechanism:

Vx = Softmax
(
EtU

T
x√
d

)
Ux,

where Ux = SAM(Ex) and Vx ∈ Rny×d.
With attended Vx, finally, the module produces a code

likelihood vector y as
y = σ(VxW3),

where W3 ∈ Rd×1 and σ is the sigmoid function.

Experiments
Datasets
The Medical Information Mart for Intensive Care III
(MIMIC-3) (Johnson et al. 2016) dataset is a benchmark
dataset which contains text and structured records from a
hospital ICU. We use the same setting as Mullenbach et al.,
where 47,724 dis- charge summaries are used for training,
with 1,632 summaries and 3,372 summaries for val- ida-
tion and testing, respectively. There are 8,922 labels in the
dataset.MIMIC-III full and 50 are commonly used splits. Ta-
ble 1 shows the details of the two splits.MIMIC-III full con-
tains all ICD-9 codes, while 50 only contains the top 50 most
frequent codes (Shi et al. 2017; Mullenbach et al. 2018).

Implementation Details
We take the pretrained weights released by original authors
without any modification. For the best PLM-ICD model,
Huang, Tsai, and Chen use RoBERTa-base-PM-M3- Voc re-
leased by Lewis et al. During fine- tuning, we train our mod-
els for 20 epochs. AdamW is chosen as the optimizer with
a learning rate of 5e 5. We employ a linear warmup sched-
ule with 2000 warmup steps, and after that the learning rate
decays linearly to 0 throughout training. The batch size is
set to 16. All models are trained on a GTX 4090 GPU. We
truncate discharge summaries to 3072 tokens due to mem-
ory consideration, and the length of each segment c is set to
128.

We evaluate our methods with commonly used metrics to
be directly comparable to previous work. The metrics used
are macro F1, micro F1, macro AUC, micro AUC, and pre-
cision@K, where K = 8, 15 for MIMIC-III full and K = 5
for MIMIC-III 50.

Baselines
MultiResCNN (Li and Yu 2020) encode free text with
Multi-Filter Residual CNN, and applied label code attention
mechanism to enable each ICD code to attend different parts
of the document.

LAAT (Vu, Nguyen, and Nguyen 2020) applies the struc-
tured self-attention that projected the hidden representation
via a linear transformation and non-linear activation.

PLM-ICD (Huang, Tsai, and Chen 2022) uses domain-
specific pre-training models with segment pooling for the
long input sequence problem.

Results
Table 2 shows the results on MIMIC-III 50. Our proposed
model achieves the best performance across most metrics.



Specifically, we improve the macro-AUC by 0.39%, micro-
AUC by 0.3%, micro-F1 by 0.6%, and P@5 by 0.75%
compared to PLM-ICD. The improvements demonstrate
that integrating code-title guided attention mechanisms with
domain-specific PLM enhances the model’s ability to cap-
ture relevant information from clinical notes.

The effectiveness of our approach can be attributed to two
key factors: (1) the domain-specific pretraining helps the
model better understand medical terminology and context,
and (2) the code-title guided attention mechanism enables
more precise connections between clinical notes and ICD
codes. This is particularly evident in the improved macro
metrics, suggesting better handling of less frequent codes.

Ablation Study
Table 3 provides analysis on factors that affect PLM’s per-
formance on automatic ICD coding.

Table 3: Ablation Study on the MIMIC-III 50 test set (%).

Model Macro-F Micro-F
Ours 89.7 93.8
(a) - domain pretraining 88.4 92.3
(b) - code-title guided attention 87.1 90.0

Effect of Pretrained Models
Huang, Tsai, and Chen have already test 4 models accrd-
ing to the BLURB(the Biomedical Language Understanding
and Reasoning Benchmark)(Gu et al. 2021).And we select
(Yasunaga et al., 2022) and BioClinicalBERT(Alsentzer et
al., 2019) from BLURB to compare the performance of Pre-
trained Models.Table 4 shows RoBERTa-PM has best per-
formance.

Table 4: Results with different PLMs on the MIMIC-III 50
test set (%).

Model Macro-F Micro-F
RoBERTa-PM 92.09 94.10
BioLinkBERT 89.99 92.85
BioClinicalBERT 88.90 91.78

Conclusion
In this paper, we introduced a novel framework for auto-
matic ICD coding that combines the strengths of PLM-ICD
and RAC models. By integrating code-title guided atten-
tion mechanisms with domain-specific pretrained language
models, our approach achieves superior performance on the
MIMIC-III dataset. The experimental results demonstrate
the effectiveness of leveraging code title information to es-
tablish semantic connections between clinical notes and ICD
codes. Future work could explore additional domain-specific
knowledge integration and attention mechanisms to further
improve performance.

References
Baumel, T.; Nassour-Kassis, J.; Cohen, R.; and Elhadad,
M. 2017. Multi-Label Classification of Patient Notes: Case
Study on ICD Code Assignment.
Cao, P.; Chen, Y.; Liu, K.; Zhao, J.; Liu, S.; and Chong, W.
2020. HyperCore: Hyperbolic and Co-graph Representa-
tion for Automatic ICD Coding. In Jurafsky, D.; Chai, J.;
Schluter, N.; and Tetreault, J., eds., Proceedings of the 58th
Annual Meeting of the Association for Computational Lin-
guistics, 3105–3114. Online: Association for Computational
Linguistics.
Choi, E.; Bahadori, M. T.; Schuetz, A.; Stewart, W. F.; and
Sun, J. 2016. Doctor AI: Predicting Clinical Events via Re-
current Neural Networks. In Proceedings of the 1st Machine
Learning for Healthcare Conference, 301–318. PMLR.
Dong, H.; Falis, M.; Whiteley, W.; Alex, B.; Matterson, J.;
Ji, S.; Chen, J.; and Wu, H. 2022. Automated clinical coding:
what, why, and where we are? NPJ digital medicine, 5(1):
159.
Gu, Y.; Tinn, R.; Cheng, H.; Lucas, M.; Usuyama, N.; Liu,
X.; Naumann, T.; Gao, J.; and Poon, H. 2021. Domain-
Specific Language Model Pretraining for Biomedical Natu-
ral Language Processing. ACM Trans. Comput. Healthcare,
3(1): 2:1–2:23.
Huang, C.-W.; Tsai, S.-C.; and Chen, Y.-N. 2022. PLM-
ICD: Automatic ICD Coding with Pretrained Language
Models. In Naumann, T.; Bethard, S.; Roberts, K.; and
Rumshisky, A., eds., Proceedings of the 4th Clinical Nat-
ural Language Processing Workshop, 10–20. Seattle, WA:
Association for Computational Linguistics.
Johnson, A. E. W.; Pollard, T. J.; Shen, L.; Lehman, L.-
w. H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.;
Anthony Celi, L.; and Mark, R. G. 2016. MIMIC-III, a
freely accessible critical care database. Scientific Data, 3(1):
160035.
Kim, B.-H.; and Ganapathi, V. 2021. Read, Attend, and
Code: Pushing the Limits of Medical Codes Prediction from
Clinical Notes by Machines. In Proceedings of the 6th
Machine Learning for Healthcare Conference, 196–208.
PMLR.
Lewis, P.; Ott, M.; Du, J.; and Stoyanov, V. 2020. Pre-
trained Language Models for Biomedical and Clinical
Tasks: Understanding and Extending the State-of-the-Art. In
Rumshisky, A.; Roberts, K.; Bethard, S.; and Naumann, T.,
eds., Proceedings of the 3rd Clinical Natural Language Pro-
cessing Workshop, 146–157. Online: Association for Com-
putational Linguistics.
Li, F.; and Yu, H. 2020. ICD Coding from Clinical Text
Using Multi-Filter Residual Convolutional Neural Network.
In The Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, 8180–8187. AAAI Press.
Liu, Y.; Cheng, H.; Klopfer, R.; Gormley, M. R.; and Schaaf,
T. 2021. Effective Convolutional Attention Network for



Multi-label Clinical Document Classification. In Moens,
M.-F.; Huang, X.; Specia, L.; and Yih, S. W.-t., eds., Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, 5941–5953. Online and
Punta Cana, Dominican Republic: Association for Compu-
tational Linguistics.
Mullenbach, J.; Wiegreffe, S.; Duke, J.; Sun, J.; and Eisen-
stein, J. 2018. Explainable Prediction of Medical Codes
from Clinical Text. In Walker, M.; Ji, H.; and Stent, A., eds.,
Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers),
1101–1111. New Orleans, Louisiana: Association for Com-
putational Linguistics.
O’Malley, K. J.; Cook, K. F.; Price, M. D.; Wildes, K. R.;
Hurdle, J. F.; and Ashton, C. M. 2005. Measuring Di-
agnoses: ICD Code Accuracy. Health Services Research,
40(5p2): 1620–1639.
Park, H.; Casta&#241; O, J.; &#193; Vila, P.; P&#233; Rez,
D.; Berinsky, H.; n; Gambarte, L.; Luna, D.; and Otero, C.
2019. An Information Retrieval Approach to ICD-10 Clas-
sification. In MEDINFO 2019: Health and Wellbeing e-
Networks for All, 1564–1565. IOS Press.
Rizzo, S. G.; Montesi, D.; Fabbri, A.; and Marchesini, G.
2015. ICD Code Retrieval: Novel Approach for Assisted
Disease Classification. In Ashish, N.; and Ambite, J.-L.,
eds., Data Integration in the Life Sciences, 147–161. Cham:
Springer International Publishing. ISBN 978-3-319-21843-
4.
Shi, H.; Xie, P.; Hu, Z.; Zhang, M.; and Xing, E. P. 2017. To-
wards Automated ICD Coding Using Deep Learning. Pub-
lication Title: ArXiv preprint Volume: abs/1711.04075.
Stanfill, M. H.; Williams, M.; Fenton, S. H.; Jenders, R. A.;
and Hersh, W. R. 2010. A systematic literature review of
automated clinical coding and classification systems. Jour-
nal of the American Medical Informatics Association, 17(6):
646–651.
Teng, F.; Liu, Y.; Li, T.; Zhang, Y.; Li, S.; and Zhao, Y. 2023.
A Review on Deep Neural Networks for ICD Coding. IEEE
Transactions on Knowledge and Data Engineering, 35(5):
4357–4375.
Teng, F.; Yang, W.; Chen, L.; Huang, L.; and Xu, Q. 2020.
Explainable Prediction of Medical Codes With Knowledge
Graphs. Frontiers in Bioengineering and Biotechnology, 8.
Tsai, S.-C.; Chang, T.-Y.; and Chen, Y.-N. 2019. Leverag-
ing Hierarchical Category Knowledge for Data-Imbalanced
Multi-Label Diagnostic Text Understanding. In Holderness,
E.; Jimeno Yepes, A.; Lavelli, A.; Minard, A.-L.; Puste-
jovsky, J.; and Rinaldi, F., eds., Proceedings of the Tenth
International Workshop on Health Text Mining and Infor-
mation Analysis (LOUHI 2019), 39–43. Hong Kong: Asso-
ciation for Computational Linguistics.
Tseng, P.; Kaplan, R. S.; Richman, B. D.; Shah, M. A.; and
Schulman, K. A. 2018. Administrative Costs Associated
With Physician Billing and Insurance-Related Activities at
an Academic Health Care System. JAMA, 319(7): 691–697.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Guyon, I.; Luxburg, U. v.; Ben-
gio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V. N.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, 5998–6008.
Vu, T.; Nguyen, D. Q.; and Nguyen, A. 2020. A Label Atten-
tion Model for ICD Coding from Clinical Text. In Bessiere,
C., ed., Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020, 3335–
3341. ijcai.org.
Wang, G.; Li, C.; Wang, W.; Zhang, Y.; Shen, D.; Zhang,
X.; Henao, R.; and Carin, L. 2018. Joint embedding of
words and labels for text classification. arXiv preprint
arXiv:1805.04174.
Xie, P.; and Xing, E. 2018. A Neural Architecture for Auto-
mated ICD Coding. In Gurevych, I.; and Miyao, Y., eds.,
Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
1066–1076. Melbourne, Australia: Association for Compu-
tational Linguistics.
Xie, X.; Xiong, Y.; Yu, P. S.; and Zhu, Y. 2019. EHR Coding
with Multi-scale Feature Attention and Structured Knowl-
edge Graph Propagation. In Zhu, W.; Tao, D.; Cheng, X.;
Cui, P.; Rundensteiner, E. A.; Carmel, D.; He, Q.; and Yu,
J. X., eds., Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management, CIKM
2019, Beijing, China, November 3-7, 2019, 649–658. ACM.
Yang, Z.; Wang, S.; Rawat, B. P. S.; Mitra, A.; and Yu,
H. 2022. Knowledge Injected Prompt Based Fine-tuning
for Multi-label Few-shot ICD Coding. In Goldberg, Y.;
Kozareva, Z.; and Zhang, Y., eds., Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022, 1767–
1781. Abu Dhabi, United Arab Emirates: Association for
Computational Linguistics.
Zhang, Z.; Liu, J.; and Razavian, N. 2020. BERT-XML:
Large Scale Automated ICD Coding Using BERT Pretrain-
ing. In Rumshisky, A.; Roberts, K.; Bethard, S.; and Nau-
mann, T., eds., Proceedings of the 3rd Clinical Natural Lan-
guage Processing Workshop, 24–34. Online: Association for
Computational Linguistics.
Zhou, T.; Cao, P.; Chen, Y.; Liu, K.; Zhao, J.; Niu, K.;
Chong, W.; and Liu, S. 2021. Automatic ICD Coding
via Interactive Shared Representation Networks with Self-
distillation Mechanism. In Zong, C.; Xia, F.; Li, W.; and
Navigli, R., eds., Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), 5948–5957. Online: As-
sociation for Computational Linguistics.


